当前位置:首页 > 外国语学院 > 英语口译(翻译硕士) > 正文内容

硅材料考研英语(硅材料论文)

2023-02-20 05:06:06英语口译(翻译硕士)1

硅材料论文

二维纳米材料作为电极材料有哪些优势

澳大利亚科学家研制出一种由氧化钼晶体制成的新型二维纳米材料,有可能给电子工业带来革命,使“纳米”一词不再停留于营销概念而成为现实。 在材料学中,厚度为纳米量级的晶体薄膜通常被视作二维的,即只有长宽,厚度可忽略不计,称为二维纳米材料。新研制出的这种材料厚度仅有11纳米,它有着独特的性质,电子在其内部能以极高速度运动。 科学家说,他们是从另一种奇妙的新材料——石墨烯得到启发的。石墨烯是单层碳原子网,是人类已知的最薄材料,电子在其中也能高速运动。但石墨烯缺乏能隙,用它制造的晶体管无法实现电流开关。氧化钼材料本身拥有能隙,将它制成类似石墨烯的薄片后,既支持电子高速运动,其半导体特性又适合制造晶体管。

科学家说,在新材料内部,电子极少因为遇到“路障”而散射,可以流畅地迅速运动。利用这种新材料可研制出更小、数据传输速度更快的电子元件和产品,例如性能与台式电脑相当的平板电脑。 <p>电子产品的性能取决于半导体集成能力,在过去几十年里,技术进步使晶体管体积大大缩小,硅芯片性能提高了成千上万倍,带来了信息技术革命。但受限于硅材料本身的性质,传统半导体技术已经趋近极限。科学家正在积极寻找新一代半导体核心材料。 <p>研究小组已经用新材料制造出纳米尺度的晶体管。他们预计,如果被电子工业所接受,氧化钼有可能在5到7年内成为电子产品的标准材料。相关论文发表在1月4日的《先进材料》杂志上。

硅材料前景分析

多晶硅,是半导体及工业自动化控制技术的核心材料,也是太阳能光伏发电产业的基础材料。目前,还没有能完全取代多晶硅的材料出现,因此,多晶硅行业会一直保持良好的发展。

只是该行业已逐渐成熟,参与者众多,竞争会越来越激烈。

多晶硅行业未来发展趋势是更低成本,更高质量(包括向半导级方面)发展。

硅材料应用前景

前景一般。

硅石主要用于冶金工业用的酸性耐火砖。纯硅石可作石英玻璃或提炼单晶硅。化学工业上用于制备硅化合物和硅酸盐,也可作硫酸塔的填充物。建材工业上用于玻璃、陶瓷、硅酸盐水泥等。可用作工业硅等铁合金冶炼的原材料。可见硅石的应用大多是传统行业,所以在冶金,建筑行业产能过剩的情况下,作为原材料之一的硅石的发展肯定也会受到限制,所以前景一般。

硅材料应用

1、硅是电子工业超纯硅的原料,超纯半导体单晶硅做的电子器件具有体积小、重量轻、可靠性好和寿命长等优点。掺有特定微量杂质的硅单晶制成的大功率晶体管、整流器及太阳能电池,比用锗单晶制成的好。

2、非晶硅太阳能电池研究进展很快,转换率达到了8%以上。硅钼棒电热元件最高使用温度可达1700℃,具有电阻不易老化和良好的抗氧化性能。

3、用硅生产的三氯氢硅,可配制几百种硅树脂润滑剂和防水化合物等。此外,碳化硅可作磨料,高纯氧化硅制作的石英管是高纯金属冶炼及照明灯具的重要材料。

4、硅构筑植物的重要元素。硅是植物重要的营养元素,大部分植物体内含有硅。表明,硅在植物干物质中占的比例为0.1-20%。

5、硅是品质元素。有改善农产品品质的作用,并有利于贮存和运输。硅能调节作物的光合作用和蒸腾作用,提高光合效率,增强作物的抗旱、抗干热风和抗低温能力。

硅肥可增强作物对病虫害的抵抗力,减少病虫危害。作物吸收硅后,在体内形成硅化细胞,使茎叶表层细胞壁加厚,角质层增加,从而提高防虫抗病能力。硅肥可提高作物抗倒伏。由于作物的茎秆直,使抗倒伏能力提高80%左右。

硅肥可使作物体内通气性增强。作物体内含硅量增加,使作物导管刚性加强,促使通气性,不但可促进作物根系生长,还可预防根系的腐烂和早衰。

6、微孔硅钙保温材料微孔硅钙保温材料是一种优良的保温材料。它具有热容量小、机械强度高、导热系数低、不燃烧、无毒无味、可切割、运输方便等特点,可广泛用于冶金、电力、化工、船舶等各种热力设备及管道上。

硅材料技术发展现状及展望

自从1833年,法拉第最先发现硫化银的电阻随温度的变化情况不同于一般金属,即硫化银的电阻随温度的上升而降低,科学家们就开始了对于半导体的研究之路。 常温下导电性能介于导体与绝缘体之间的材料,目前各种资料对半导体材料都不约而同的采用了类似于这种的定义。但我们要注意的是,导电性能只能是半导体材料的一个特点,我们更多关注的是其五大特性:掺杂性、热敏性、光敏性、负电阻率温度特性,整流特性。

而硅和锗就是人们最早发现的半导体材料,又被公认为是第一代半导体材料,硅、锗在科学家们利用其半导体特性进行实际应用之前,应用都很有限。早期的半导体材料是用锗的,那时候硅的提纯技术还不够成熟。直至后来硅的提纯工艺成熟以后,不仅集成电路大量的采用了硅材料,而且硅集成电路得到了良好的发展。 直至21世纪的今天,硅还是集成电路产业的支柱,而锗的应用似乎就少一些。是什么原因导致了硅和锗如此巨大的差别呢?我们从两种材料的指标来分析。 首先是两种材料的储量有很大差距。

目前,全世界已探明的锗保有储量约为 8600 金属吨,而世界已查明的黄金储量约为 8.9 万吨,也就是说锗储量甚至比大家公认的以稀少著称贵金属黄金还要稀少。而硅的储量处于地壳元素储量的第二位,广袤的沙漠,沙子给集成电路产业提供了充足且廉价的原料。 硅的界面特性更适合。硅与二氧化硅的界面性质良好,和别的半导体材料的相应的氧化层的界面相比,硅/二氧化硅的界面堪称完美。界面缺陷随着技术的进步也控制的越来越好。同时二氧化硅可以作为杂质注入时候的遮蔽层,可以有效的阻挡磷元素和硼元素等。另一个原因是二氧化硅是非常稳定的绝缘体材料,而二氧化锗不仅高温不稳定而且还会溶于水,而

二氧化硅完全没有这样的问题;二氧化硅的能隙大可以使得其漏电流较低。 硅有更合适的能带间隙。我们都知道,半导体材料在实际应用时,我们都需要掺杂。对于较高的能带间隙来说可以承受较高的操作温度和较大的杂志掺杂范围,性能良好。而锗的能带间隙较窄,操作的范围就比较小。 硅的晶体结构更好。晶体硅也是和金刚石一样的晶体结构,意味着其强度够高,稳定性也够高。并且意味着单晶硅有三个晶向,在实际的工艺过程中,可以采用异性刻蚀,也就是说,在加工过程中我们对于其具体加工程度可以得到非常好的控制。

综上所述,硅在很多方面都有着非常优异的性能

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接://www.kaoyantv.com/k11/yingyukouyifanyishuoshi/1232197120.html